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Abstract

F A Gonçalves, Isabel; Pesco, Sinesio (Advisor); Silva, Thiago M.
D. (Co-Advisor). Machine learning strategies to predict oil
field performance as time-series forecasting. Rio de Janeiro,
2023. 100p. Dissertação de Mestrado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

Precisely forecasting oil field performance is essential in oil reservoir plan-
ning and management. Nevertheless, forecasting oil production is a complex
nonlinear problem due to all geophysical and petrophysical properties that may
result in different effects with a bit of change. Thus, all decisions to be made
during an exploitation project must consider different efficient algorithms to
simulate data, providing robust scenarios to lead to the best deductions. To
reduce the uncertainty in the simulation process, recent studies have efficiently
introduced machine learning algorithms for solving reservoir engineering pro-
blems since they can extract the maximum information from the dataset. This
thesis proposes using two machine learning techniques to predict the daily oil
production of an offshore reservoir. Initially, the oil rate production is consi-
dered a time series and is pre-processed and restructured to fit a supervised
learning problem. The Random Forest model is used to forecast a one-time
step, which is an extension of decision tree learning, widely used in regres-
sion and classification problems for supervised machine learning. Regardless,
the restrictions of this approach lead us to a more robust model, the LSTM
RNN’s, which are proposed by several studies as a suitable deep learning te-
chnique for time series modeling. Various configurations of LSTM RNN’s were
constructed to implement single-step and multi-step oil rate forecasting and
down-hole pressure was incorporated to the inputs. For testing the robustness
of the proposed models, we use four different datasets, three of them syntheti-
cally generated and one from a public real dataset, the Volve oil field, as a case
study to conduct the experiments. The results indicate that the Random Forest
model could sufficiently estimate the one-time step of the oil field production,
and LSTM could handle more inputs and adequately estimate multiple-time
steps of oil production.

Keywords
LSTM; Machine Learning; Production prediction; Neural network.
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Resumo

F A Gonçalves, Isabel; Pesco, Sinesio; Silva, Thiago M. D.. Predi-
ção da performance de reservatórios de petróleo utilizando
estratégias de aprendizado de máquina para séries tempo-
rais. Rio de Janeiro, 2023. 100p. Dissertação de Mestrado – Depar-
tamento de Matemática, Pontifícia Universidade Católica do Rio
de Janeiro.

Prever precisamente a produção de óleo é essencial para o planejamento e
administração de um reservatório. Entretanto, prever a produção de óleo é um
problema complexo e não linear, devido a todas as propriedades geofísicas que
com pequenas variações podem resultar em differentes cenários. Além disso,
todas as decisões tomadas durante a exploração do projeto devem considerar
diferentes algoritmos para simular dados, fornecer cenários e conduzir a boas
deduções. Para reduzir as incertezas nas simulações, estudos recentes propuse-
ram o uso de algoritmos de aprendizado de maquina para solução de problemas
da engenharia de reservatórios, devido a capacidade desses modelos de extrair
o maxiomo de informações de um conjunto de dados. Essa tese propôe o uso
ed duas tecnicas de machine learning para prever a produção diaria de óleo
de um reservatório. Inicialmente, a produção diária de óleo é considerada uma
série temporal, é pré-processada e reestruturada como um problema de apren-
dizado supervisionado. O modelo Random Forest, uma extensão das arvores
de decisão muito utilizado em problemas de regressão e classificação, é utili-
zado para predizer um passo de tempo a frente. Entretanto, as restrições dessa
abordagem nos conduziram a um modelo mais robusto, as redes neurais recor-
rentes LSTM, que são utilizadas em varios estudos como uma ferramenta dee
aprendizado profundo adequada para modelagem de séries temporais. Várias
configurações de redes LSTM foram construidas para implementar a previsão
de um passo de tempo e de multiplos passos de tempo, a pressão do fundo de
poço foi incorporada aos dados de entrada. Para testar a eficacia dos mode-
los propostos, foram usados quatro conjunto de dados diferentes, três gerados
sintéticamente e um conjunto de dados reais do campo de produção VOlve,
como casos de estudo para conduzir os experimentos. Os resultados indicam
que o Random Forest é suficiente para previsões de um passo de tempo da
produção de óleo e o LSTM é capaz de lidar com mais dados de entrada e
estimar multiplos passos de tempo da produção de óleo.

Palavras-chave
LSTM; Machine Learning; Production prediction; Neural networks.

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



Table of contents

1 Introduction 14

2 Machine Learning 18
2.1 Supervised Learning 19
2.2 Unsupervised Learning 20
2.3 Reinforcement Learning 21
2.4 Random Forest Regressor 22
2.5 Neural Networks 24
2.6 LSTM 25

3 Proposed Methodology 30
3.1 Problem description 30
3.2 Random Forest Methodology 31
3.3 LSTM Methodology 34
3.4 Datasets 35
3.4.1 Dataset 1, Dataset 2 and Dataset 3 35
3.4.2 Dataset 4: Volve 36

4 Results 39
4.1 Random Forest Prediction 39
4.1.1 Forward-days = 1 40
4.1.2 Forward-days = 10 46
4.1.3 Forward-days = 50 52
4.1.4 Forward-days = 100 56
4.2 LSTM predictions 62
4.2.1 Input: Oil rate 63
4.2.1.1 Forward-days = 1 63
4.2.1.2 Forward-days = 10 67
4.2.1.3 Forward-days = 50 70
4.2.1.4 Forward-days = 100 76
4.2.2 Input: Oil rate and pressure 81
4.2.2.1 Forward-days = 50 81
4.2.3 Input: Oil rate, pressure and future pressure 87
4.3 Results Comparison 92
4.3.1 Random Forest x LSTM 92
4.3.2 1 input x 3 inputs 93

5 Conclusions 94

Bibliography 96

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



List of figures

Figure 2.1 Random Forest diagram. 23
Figure 2.2 LSTM architecture unrolled over time. 25
Figure 2.3 LSTM architecture unrolled over time. 26
Figure 2.4 The Forget gate. 27
Figure 2.5 The Input gate. 28
Figure 2.6 The cell state. 28
Figure 2.7 The Output gate. 29

Figure 3.1 Example of 500 days observations dataset organization 32
Figure 3.2 Example of 500 days observations dataset organization. 35
Figure 3.3 Dataset 1. 36
Figure 3.4 Dataset 2. 37
Figure 3.5 Dataset 3. 38
Figure 3.6 Dataset 4: Well "15/9-F-1 C" daily oil production data

contained in the Volve dataset. 38

Figure 4.1 Random Forest oil production predictions in test set from
Dataset 1 with look-back = {10, 25, 50}. 41

Figure 4.2 Oil production forecast with Random Forest in Dataset 1
with look-back =10, n_estimators=1000, max_samples as 50%
and RMSE= 09.64 41

Figure 4.3 Random Forest oil production predictions in test set from
Dataset 2 with look-back = {10, 25, 50}. 42

Figure 4.4 Oil production forecast with Random Forest in Dataset
2 with look-back =10, n_estimators=500, max_samples as 50%
and RMSE= 22.87 43

Figure 4.5 Random Forest oil production predictions in test set from
Dataset 3 with look-back = {10, 25, 50}. 44

Figure 4.6 Oil production forecast with Random Forest in Dataset
3 with look-back =10, n_estimators=100, max_samples as 50%
and RMSE= 36.37 44

Figure 4.7 Random Forest oil production predictions in test set from
Dataset 4 with look-back = {10, 25, 50}. 45

Figure 4.8 Oil production forecast with Random Forest in Dataset 4
with look-back = 50, n_estimators=1000, max_samples as 50%
and RMSE= 73.07 45

Figure 4.9 Random Forest oil production predictions in test set from
Dataset 1 with look-back = {10, 25, 50} and forward-days = 10. 48

Figure 4.10 Oil production forecast with Random Forest in Dataset 1
with look-back =25, n_estimators=1000, max_samples as 50%
and RMSE= 2.48 48

Figure 4.11 Random Forest oil production predictions in test set from
Dataset 2 with look-back = {10, 25, 50} and forward-days = 10. 49

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



Figure 4.12 Oil production forecast with Random Forest in Dataset
2 with look-back =10, forward-days = 10, n_estimators=1000,
max_samples as 50% and RMSE= 28.38 49

Figure 4.13 Random Forest oil production predictions in test set from
Dataset 3 with look-back = {10, 25, 50} and forward-days = 10. 50

Figure 4.14 Oil production forecast with Random Forest in Dataset
3 with look-back =10, forward-days = 10, n_estimators=1000,
max_samples as 50% and RMSE= 43.49 50

Figure 4.15 Random Forest oil production predictions in test set from
Dataset 4 with look-back = {10, 25, 50} and forward-days = 10. 51

Figure 4.16 Oil production forecast with Random Forest in Dataset
4 with look-back =10, forward-days = 10, n_estimators=1000,
max_samples as 50% and RMSE= 137.20 51

Figure 4.17 Random Forest oil production predictions in test set from
Dataset 1 with look-back = {25, 50, 100} and forward-days = 50. 53

Figure 4.18 Oil production forecast with Random Forest in Dataset
1 with look-back =25, forward-days = 50, n_estimators=100,
max_samples as 50% and RMSE= 34.35 53

Figure 4.19 Random Forest oil production predictions in test set from
Dataset 2 with look-back = {25, 50, 100} and forward-days = 50. 54

Figure 4.20 Oil production forecast with Random Forest in Dataset
2 with look-back =25, forward-days = 50, n_estimators=100,
max_samples as 50% and RMSE= 45.19 54

Figure 4.21 Random Forest oil production predictions in test set from
Dataset 3 with look-back = {25, 50, 100} and forward-days = 50. 55

Figure 4.22 Oil production forecast with Random Forest in Dataset
3 with look-back =25, forward-days = 50, n_estimators=500,
max_samples as 50% and RMSE= 71.73 55

Figure 4.23 Random Forest oil production predictions in test set from
Dataset 4 with look-back = {10, 25, 50} and forward-days = 50. 56

Figure 4.24 Oil production forecast with Random Forest in Dataset
4 with look-back =25, forward-days = 50, n_estimators=1000,
max_samples as 80% and RMSE= 203.41 56

Figure 4.25 Random Forest oil production predictions in test set from
Dataset 1 with look-back = {50, 100, 200} and forward-days = 100. 58

Figure 4.26 Oil production forecast with Random Forest in Dataset 1
with look-back = 100, forward-days = 100, n_estimators=100,
max_samples as 50% and RMSE= 45.67 58

Figure 4.27 Random Forest oil production predictions in test set from
Dataset 2 with look-back = {50, 100, 200} and forward-days = 100. 59

Figure 4.28 Oil production forecast with Random Forest in Dataset
2 with look-back = 50, forward-days = 100, n_estimators=100,
max_samples as 50% and RMSE= 63.42 59

Figure 4.29 Random Forest oil production predictions in test set from
Dataset 3 with look-back = {10, 25, 50} and forward-days = 100. 60

Figure 4.30 Oil production forecast with Random Forest in Dataset
3 with look-back = 50, forward-days = 100, n_estimators=500,
max_samples as 50% and RMSE= 158.43 60

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



Figure 4.31 Random Forest oil production predictions in test set from
Dataset 4 with look-back = {50, 100} and forward-days = 100. 61

Figure 4.32 Oil production forecast with Random Forest in Dataset 4
with look-back = 100, forward-days = 100, n_estimators=1000,
max_samples as 80% and RMSE= 213.91 62

Figure 4.33 LSTM Model 1 oil production forecast in Dataset 1, with
forward-days = 1, look-back = 10 and RMSE= 1.34. 64

Figure 4.34 LSTM Model 1 oil production forecast in Dataset 2, with
forward-days = 1, look-back = 10 and RMSE= 03.73. 65

Figure 4.35 LSTM Model 1 oil production forecast in Dataset 3, with
forward-days = 1, look-back = 10 and RMSE= 1.71. 65

Figure 4.36 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 1, look-back = 10 and RMSE= 12.64. 66

Figure 4.37 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 1, look-back={10, 25, 50}. 66

Figure 4.38 LSTM Model 1 oil production forecast in Dataset 1, with
forward-days = 10, look-back = 50 and RMSE= 1.00. 68

Figure 4.39 LSTM Model 1 oil production forecast in Dataset 2, with
forward-days = 10, look-back = 10 and RMSE= 03.12. 68

Figure 4.40 LSTM Model 1 oil production forecast in Dataset 3, with
forward-days = 1, look-back = 10 and RMSE= 1.71. 69

Figure 4.41 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 1, look-back = 10 and RMSE= 102.66. 69

Figure 4.42 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 10, look-back={10, 25, 50}. 70

Figure 4.43 LSTM Model 1 oil production forecast in Dataset 1, with
forward-days = 50, look-back={25, 50, 100}. 71

Figure 4.44 LSTM Model 1 oil production forecast in Dataset 1, with
forward-days = 50, look-back = 50 and RMSE= 10.96. 72

Figure 4.45 LSTM Model 1 oil production forecast in Dataset 2, with
forward-days = 50, look-back={25, 50, 100}. 72

Figure 4.46 LSTM Model 1 oil production forecast in Dataset 2, with
forward-days = 50, look-back = 25 and RMSE= 12.20. 73

Figure 4.47 LSTM Model 1 oil production forecast in Dataset 3, with
forward-days = 50, look-back={25, 50, 100}. 73

Figure 4.48 LSTM Model 1 oil production forecast in Dataset 3, with
forward-days = 50, look-back = 100 and RMSE= 11.97. 74

Figure 4.49 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 50, look-back = 10 and RMSE= 161.67. 74

Figure 4.50 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 50, look-back = 50 and RMSE= 271.32. 75

Figure 4.51 LSTM Model 2 oil production forecast in Dataset 4, with
forward-days = 50, look-back={10, 25, 50}. 76

Figure 4.52 LSTM Model 1 oil production forecast in Dataset 1, with
forward-days = 100, look-back={50, 100, 200}. 77

Figure 4.53 LSTM Model 1 oil production forecast in Dataset 1, with
forward-days = 100, look-back = 200 and RMSE= 17.09. 78

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



Figure 4.54 LSTM Model 1 oil production forecast in test set of
Dataset 2, with forward-days = 100, look-back={50, 100, 200}. 78

Figure 4.55 LSTM Model 1 oil production forecast in Dataset 2, with
forward-days = 100, look-back = 100 and RMSE= 19.24. 79

Figure 4.56 LSTM Model 1 oil production forecast in Dataset 3, with
forward-days = 100, look-back={50, 100, 200}. 79

Figure 4.57 LSTM Model 1 oil production forecast in Dataset 3, with
forward-days = 100, look-back = 100 and RMSE= 17.99. 80

Figure 4.58 LSTM Model 2 oil production forecast in Dataset 4, with
forward-days = 100, look-back={50, 100}. 80

Figure 4.59 LSTM Model 1 oil production forecast in Dataset 4, with
forward-days = 100, look-back = 100 and RMSE= 209.66. 81

Figure 4.60 LSTM Model 2 oil production forecast in Dataset 1, with
forward-days = 50, look-back={25, 50, 100}. 83

Figure 4.61 LSTM Model 2 oil production forecast in Dataset 1, with
forward-days = 50, look-back = 50 and RMSE= 42.37. 83

Figure 4.62 LSTM Model 2 oil production forecast in Dataset 2, with
forward-days = 50, look-back={25, 50, 100}. 84

Figure 4.63 LSTM Model 2 oil production forecast in Dataset 2, with
forward-days = 50, look-back = 50 and RMSE= 35.31. 84

Figure 4.64 LSTM Model 2 oil production forecast in test set of
Dataset 3, with forward-days = 50, look-back={25, 50, 100}. 85

Figure 4.65 LSTM Model 2 oil production forecast in Dataset 3, with
forward-days = 50, look-back = 50 and RMSE = 34.09. 85

Figure 4.66 LSTM Model 2 oil production forecast in test set of
Dataset 4, with forward-days = 50, look-back={25, 50, 100}. 86

Figure 4.67 LSTM Model 2 oil production forecast in Dataset 4, with
forward-days = 50, look-back = 25 and RMSE= 224.79. 86

Figure 4.68 LSTM Model 2 oil production forecast in Dataset 1, with
3 inputs and forward-days = {50, 100}. 88

Figure 4.69 LSTM Model 2 oil production forecast in Dataset 1,
with 3 inputs and forward-days = 100, look-back = 100 and
RMSE= 07.51. 88

Figure 4.70 LSTM Model 2 oil production forecast in Dataset 2, with
3 inputs and forward-days = {50, 100}. 89

Figure 4.71 LSTM Model 2 oil production forecast in Dataset 2,
with 3 inputs and forward-days = 50, look-back = 50 and
RMSE= 21.36. 89

Figure 4.72 LSTM Model 2 oil production forecast in Dataset 3, with
3 inputs and forward-days = {50, 100}. 90

Figure 4.73 LSTM Model 2 oil production forecast in Dataset 3, with
3 inputs and forward-days = 50, look-back = 50 and RMSE
= 45.89. 90

Figure 4.74 LSTM Model 2 oil production forecast in Dataset 4, with
3 inputs and forward-days = {50, 100}. 91

Figure 4.75 LSTM Model 2 oil production forecast in Dataset 4, with
3 inputs and forward-days = 50, look-back = 50 and RMSE
= 147.11. 91

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



List of tables

Table 3.1 Variation of pressure in Dataset 1, Dataset 2, and Dataset
3. 36

Table 4.1 Summary of the Random Forest results with look-back
= {10, 25, 50} and forward-days = 1. 40

Table 4.2 Summary of the Random Forest results with look-back
= {10, 25, 50} and forward-days = 10. 47

Table 4.3 Summary of the Random Forest results with look-back
= {25, 50, 100} and forward-days = 50. 52

Table 4.4 Summary of the Random Forest results with look-back
= {10, 25, 50} and forward-days = 100. 57

Table 4.5 Summary of the LSTM Model 1 results when the input
was the oil rate production, with look-back = {10, 25, 50} and
forward-days = 1. 64

Table 4.6 Summary of the LSTM Model 1 results when the input
was the oil rate production, with look-back = {10, 25, 50} and
forward-days = 10. 67

Table 4.7 Summary of the LSTM Model 1 results when the input
was the oil rate production, with look-back = {25, 50, 100} and
forward-days = 50. 71

Table 4.8 Summary of the LSTM Model 2 results when the input
was the oil rate production, with look-back = {25, 50, 100} and
forward-days = 50 for Dataset 4. 75

Table 4.9 Summary of the LSTM Model 1 results when the input
was the oil rate production, with look-back = {25, 50, 100} and
forward-days = 100. 77

Table 4.10 LSTM Model 2 results when the input was the oil rate
production, with look-back = {50, 100} and forward-days = 100
for Dataset 4. 77

Table 4.11 Summary of the LSTM Model 2 results when the input
was the oil rate production and the down hole pressure, with
look-back = {25, 50, 100} and forward-days = 50. 82

Table 4.12 LSTM Model 2 results when the input was the oil rate
production, the past and the future down hole pressure with
forward-days = {50, 100}. 87

Table 4.13 Summary of the LSTM Model 1 and Random Forest
results for forward-days = {1, 10, 50, 100}. 92

Table 4.14 Summary of the LSTM results with 1 and 3 inputs, for
forward-days = 100. 93

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



List of Abreviations

ARIMA – Autoregressive Integrated Moving Average

CART – Classification and Regression Trees

GN – Gauss-Newton

GPU – Graphics processing unit

LSTM – Long Short Term Memory

LN – Levenberg-Marquardt

LS – Least Squares

MA – Moving Average

MAE – Mean Absolut Error

PCA – Principal component analysis

RF – Random Forest

RNN – recurrent neural network

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



1
Introduction

Oil field operation is a critical aspect of the energy industry that involves
the exploration, production, and management of oil and gas resources. It
plays a crucial role in the world’s energy challenges, powering everything
from transportation to electricity generation [1]. Despite efforts to transition
to renewable energy sources, oil and gas remain essential for the foreseeable
future. The industry is vital in global economy and provides feedstock for
numerous products, including plastics, fertilizers, and pharmaceuticals.

With the ever-increasing demand for energy, the oil and gas industry faces
significant challenges and has become a multidisciplinary field that incorpo-
rates a wide range of technologies. With the complexity of oil field operations,
predicting future oil production is essential to optimize production, minimize
costs and make decisions to develop and manage the reservoir. The risks in-
volved are considerably high, demanding proper uncertainty administration
during an exploitation project.

Moreover, reservoir characterization is essential when forecasting an oil
deposit’s performance and handling uncertainty. As a result, constructing a
robust reservoir model is, therefore, an important task. The process of char-
acterizing the reservoir may be executed by incorporating observed dynamic
data from a real field in a model, which is a popular technique called history
matching.

The primary tool for history matching algorithms is reservoir simulation,
which demands the creation of a theoretical reservoir numerical model in which
the user inputs the static properties and the simulation process computes
the dynamical data as output. Reservoir simulation processes are crucial for
reservoir management, which enables testing of several different production
plans for forecasting. At the end of the simulation and characterization
process, the model is expected to compute output dynamical data similar
to the observed data. Nevertheless, reservoir characterization using history
matching procedures requires many reservoir simulations and adjustments in
the reservoir model properties until the output data match the observed one.

History matching algorithms [2] are widely known to be efficient in pre-
dicting reservoir dynamical properties and oil field production. Furthermore,
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Chapter 1. Introduction 15

many studies prove that using optimization algorithms may obtain good re-
sults. We can mention the nonlinear least square methods, e.g., the Gauss-
Newton and Levenberg-Marquardt algorithms [3], and the ensemble-based
methods, e.g., the ensemble Kalman filter [2] and the ensemble smoother with
multiple data assimilation [4]. The study of Shirangi and Emerick [5] com-
pares the results obtained by applying the Levenberg-Marquardt (LM) and
the Gauss-Newton (GN) method. Their results suggest that the LM approach
could bring better results when predicting reservoir properties due to the more
negligible influence of minimal singular values in the computation of the update
vector compared to the GN application. Considering ensemble-based methods,
the study of Silva et al. [6] offers a good characterization of the damage zone in
a multilayered reservoir using the ensemble smoother with multiple data assim-
ilation. Although, the algorithms often used in these studies demand complex
mathematical or statistical backgrounds and advanced computational knowl-
edge.

Time series prediction is also a challenging task, since it involves dy-
namical on linear data. Some algorithms are known for beeing efficient in time
series forecast. ARIMA [7], which stands for Autoregressive Integrated Moving
Average, is a popular time series forecasting model that has three components:
the autoregressive (AR) component, the integrated (I) component, and the
moving average (MA) component. Although ARIMA models are flexible and
can be applied to a wide range of time series data, it assumes that the relation-
ships between the variables are linear and stationary, which may not always
be the case in real-world applications. Another technique widely used for time
series predicton is Moving Average (MA)[8], that tries to predict the value of
the target variable based on the average of its past values. The MA model has
only one parameter, which is the number of past observations used to compute
the moving average. It is a simple model, that requires little statistical knowl-
adge to understand the process and the outcomes. However, since it is based
only on the past values of the target variable, it does not take into account
any external factors or trends that may influence the future values. Also, alike
ARIMA, the MA model assumes that the data is stationary, which may not
always be the case in practice.

A powerful forecasting tool involves using machine learning algorithms.
This technique has become very popular in the last few years due to the
easy manipulation and understanding of the mathematical formulation of
such algorithms. Moreover, the statistical background of machine learning
enables the algorithm to identify complex patterns in the dataset, which may
be unfeasible when not using data-driven procedures. These algorithms are
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Chapter 1. Introduction 16

split into two ample categories: supervised and unsupervised machine learning.
We can also mention the algorithms based on reinforcement learning, which
recently gained much attention.

As a result, there has been a growing interest in integrating machine
learning techniques into oil field management to provide proxy models to
replace the necessity of simulators in some steps of the history matching
problems [9]. Machine learning algorithms can analyze large amounts of data
from various sources such as production logs, sensor data, and historical
records, to identify patterns and make predictions. The integration of machine
learning techniques into oil field management has the potential to improve the
efficiency of operations and provide more accurate information to decision-
makers.

The Random Forest is a machine learning algorithm that has gained
popularity in various industries, including the oil and gas. It is a type of
ensemble learning, which combines multiple decision trees to produce more
accurate results. In petroleum exploration, random forest has been used
in various applications, including Well test planning [10], reservoir facies
classification [11] and prediction of solid particle erosion [12]. Although the
traditional Random Forest algorithm was not designed to handle time series
data, it can be adapted for time series prediction by transforming the time
series data into a set of features that can be used to train the Random Forest
model.

Moreover, there are more sophisticated and complex models to handle
history matching problems. The deep learning area, a subfiled of Machine
Learning, presents the neural networks as a versatile and potent approach to
handling complex and nonlinear relations in datasets. The Long Short-Term
Memory (LSTM) neural network is a deep learning model specifically designed
for modeling sequential data, capable of selectively remembering or forgetting
information over time. Thus, it has been used in speech generation [13], text
summarizing [14], music generation [15] and time series forecasting [16] and
anomaly detection[17]. Hence, the LSTM neural networks are a promissing
approach for history matching problems.

Therefore, this work presents two different data-driven solutions for daily
oil production forecasting, one using the random forest and other using Long
Short-Term Memory neural networks.

This thesis is segmented as follows: Section 2 supplies a summary of
Machine Learning concepts and how Random Forest and LSTM works; Section
3 displays how we can adapt the time series problem to fit the desired inputs
and the models constructed in this work. Moreover, we introduce four different
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datasets used to evaluate the models. Finally, section 4 presents and compares
the results of the proposed methods.
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2
Machine Learning

The term "machine learning" was coined in 1959 by Arthur Samuel, who
is known for developing the first computer program to play checkers using
machine learning techniques [18]. To him, is also attributed the statement
that machine learning is a "field of study that gives computers the ability to
learn without being explicitly programmed" [19].

The beginning of Machine Learning in the 1950s was inspired by neuro-
physiological, biological, and psychological investigation [18]. During this time,
researchers began to develop and test algorithms analogues of neurons and the
first concept of a neural network, the Perceptron, was proposed in 1958 [20].

Although the advances in Machine Learning, neural networks were set
aside in the 1970s due to the perceived limitations of the algorithms [21]
and computing resources at the time. It was not until the 1980s, with
the development of new algorithms and the availability of more powerful
computing resources, that neural networks began to see a resurgence in
popularity.

During the 1980s, there was a vast growth in the field and an explosion
of interest in the area. The development of deep learning [22], a subset of
machine learning that involves more complex architectures of neural networks,
has led to breakthrough results. The term "deep" refers to the depth of the
neural network since it has multiple layers. Deep neural networks are capable
of processing large amounts of data and extracting more complex patterns and
relations. The accessibility of powerful Graphics processing units (GPUs) and
large datasets, combined with advances in neural network architectures, has
enabled deep learning algorithms to achieve higher levels of accuracy.

Among several advances that came with the rise of deep learning, the
development of backpropagation [23], a method for training multi-layer neural
networks, was a key breakthrough that helped make neural networks a more
practical approach to machine learning. This led to the development of new
neural network architectures, such as the multi-layer perceptron, and the
application of neural networks to a wide range of areas.

Throughout the 1990’s, the advancements in computing technology lead
to significant developments of Machine Learning in parallel areas of research.
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The emergence of ensemble methods, an approach that combines multiple
models to improve prediction accuracy, began to gain popularity. There are
several types of ensemble methods, including the Random Forest [24], a popular
ensemble method that combines several decision trees.

Moreover, there were advances in the neural networks models. More
complex and sophisticated neural units were built to handle more complex
tasks, such as the Long-Short Term Memory [25], a neural network capable of
retaining information over long periods of time, improving the performance on
sequential data.

Therefore, with the wide range of applications of machine learning and
deep learning techniques available nowadays, there are several types of machine
learning. In this chapter we describe the main concepts of Machine Learning,
including Supervised Learning, Unsupervised Learning and Reinforcement
Learning. Furthermore, we describe the Random Forest Algorithm and the
LSTM neural network which are the techniques used in this work.

2.1
Supervised Learning

Supervised learning is a type of machine learning algorithm in which the
model learns from labeled data, that is, data that has already been labeled with
the correct answers. In such problems, its given a set of data S = {(xi, yi)}n

i=1,
where yi is the label corresponding to xi. The key idea behind supervised
learning is to learn a function f such as yi = f(xi) + εi, that maps the input
xi to the output yi and minimizes the error εi between the predicted and true
outputs by adjusting its internal parameters.

To accomplish this, the labeled dataset S is split into two parts: a training
set and a test set. The algorithm is trained on the training set, and the
performance of the constructed function f is evaluated on the test set. The
goal is to find the parameters that minimize the error on the test set while still
generalizing well to unseen data. Supervised learning can be further divided
into two categories: regression and classification. In regression, the target yi is
a continuous output variable, and in classification, the target yi is a discrete
output variable.

Some popular algorithms used in supervised learning include linear re-
gression, logistic regression, decision trees, random forests, and neural net-
works. Each algorithm has its own strengths and weaknesses and is suitable
for different types of problems. One of the advantages of supervised learning is
that it can be used for both prediction and explanation. For example, a linear
regression model can be used to predict the price of a house based on its fea-
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tures, such as the number of bedrooms, bathrooms, and square footage. At the
same time, it can also provide insight into which features are most important
in determining the price.

However, supervised learning also has some limitations. One of the main
challenges is the need for labeled data, which can be time-consuming and
expensive to obtain. Additionally, the model’s performance is highly dependent
on the quality and representativeness of the labeled data. If the dataset
is biased or incomplete, the model’s predictions may be inaccurate or even
harmful.

In conclusion, supervised learning is a powerful and versatile machine
learning technique that has been used to solve a wide range of problems. It
requires labeled data, which can be a limitation, but it also provides insight
into the relationship.

2.2
Unsupervised Learning

Unsupervised learning is a type of machine learning that involves finding
patterns or structure in unlabeled data without explicit supervision from
a human. Unlike supervised learning, where its provided labeled data to
train the algorithm, unsupervised learning involves discovering patterns and
relationships within data on its own. Unsupervised learning is a crucial part
of modern artificial intelligence since its a potential technique to work with
great volumes of unlabeled data and discover novel patterns and relationships
that may not be apparent with tradional statistics methods. Although it is a
potential technique with several applications to unlabeled data, unsupervised
learning can be challenging due to the lack of ground truth to compare the
results to.

A common type of unsupervised learning is clustering, where data
points are grouped into clusters based on their similarity. One of the most
used criterion for clustering is the k-means criterion [26]. It is based on
minimizing the distance of data points within the same cluster. Formally, given
{x1, · · · , xn} ∈ R, we partion this points in k clusters C1, · · · , Ck. The total
sum of distances

f(Cj) :=
n∑

i=1
min

i≤j≤k
d(xi, Cj) (2-1)

it is called k-means loss function, and d(xi, Cj) is what characterizes the
similarity, between xi and Cj. Mathematically, this similarity is a distance,
defined by a norm, usually, the Euclidean norm:

||x|| =
√√√√ n∑

i=1
x2

i (2-2)
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Another type of unsupervised learning is dimensionality reduction, which
involves reducing the number of variables or features in a dataset while still
retaining as much information as possible. Dimensionality reduction is often
used in data visualization and compression to help humans understand and
work with large datasets. Principal component analysis (PCA) [27] is one of
the most popular dimensionality reduction techniques and involves finding the
directions of maximum variance in the data and projecting the data onto these
directions.

Unsupervised learning can be also used for anomaly detection, where the
algorithm learns to identify data points that are significantly different from
the rest of the data. This can be useful in many applications, including fraud
detection [28], cybersecurity [29], and predictive maintenance [30]. Anomaly
detection algorithms can use clustering, density estimation, or neural networks
to detect unusual patterns in the data.

Clustering, dimensionality reduction, and anomaly detection are just a
few examples of the types of problems that can be solved using unsupervised
learning techniques. As the amount of data generated by humans and machines
continues to grow, unsupervised learning will become even more important for
discovering patterns and relationships in this data.

2.3
Reinforcement Learning

Reinforcement learning [31] is a type of machine learning that involves
training agents to learn optimal decision-making strategies in a particular en-
vironment. This approach, which focuses on how agents can learn through
feedback, has gained popularity in recent years due to its success in various
applications [32], including robotics, game theory, and recommendation sys-
tems.

Reinforcement learning involves an agent that interacts with an environ-
ment to learn a specific task or goal. The environment provides feedback in
the form of rewards or punishments for the actions taken by the agent. The
agent’s objective is to maximize the rewards it receives by taking the optimal
actions in the given environment.

The key components of a reinforcement learning system include the agent,
environment, and reward system. The agent is the learning entity that takes
actions based on its current state and the information it has learned from
the environment. The environment is the external system in which the agent
operates and receives feedback from. The reward system is the mechanism that
provides the agent with feedback on the quality of its actions.
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The process begins with the agent selecting an action based on its current
state. The environment then provides feedback to the agent in the form of a
reward or punishment, depending on the quality of the action taken. The
agent then updates its policy based on the feedback received and selects the
next action based on the updated policy. This process continues until the agent
learns the optimal policy for the given environment.

One of the most significant advantages of reinforcement learning is that
it does not require labeled data to train an agent. Instead, it relies on the
feedback provided by the environment to learn the optimal policy. This makes
it particularly useful in situations where it may be challenging to obtain labeled
data, such as in robotics or game theory.

2.4
Random Forest Regressor

Random Forest [24] is a supervised learning algorithm with an ensemble
of size N decision trees built and trained with the input training dataset.
Each tree in the forest is build using the CART criterion. CART stands for
Classification and Regression Trees [33] and it is a machine learning algorithm
that generates binary trees, i.e., a popular data structure in computer science
in which each node has exactly two children. These two edges (children) are
defined as the left and right children. The splitting decision is made by using
an appropriate impurity criterion. The most popular ones are defined as Gini
or entropy. For regression, CART introduced variance reduction using least
squares LS (Equation (2-3)) and Mean Absolute Error MAE (Equation (2-4)).
In Equations (2-3) and (2-4) yi, refers to the prediction for an instance, N is
the number of instances and µ is the mean given by 1

N

∑N
i=1 yi.

LS = 1
N

N∑
i=1

(yi − µ)2 (2-3)

MAE = 1
N

N∑
i=1

|yi − µ| (2-4)

One can apply this model to classification and regression problems. The
main concern when using decision trees to solve real-case issues is the low
variance problem [34] widely described in the machine learning literature.It
means that if one slightly changes the training set input data, the output may
change substantially. Moreover, it is reasonable to expect the model to present
a common issue in machine learning applications called overfitting.

The overfitting [35] indicates that the model learned too much from
the training data but could not generalize the result for other datasets. A
traditional procedure that alleviates the low-variance problem of decision trees
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is called bagging [36], which builds a forest of decision trees and trains each
one with the input training dataset. However, instead of training all trees with
the whole dataset, it draws a sample of the entire dataset and determines this
small sample as the tree’s input. This procedure is executed for each tree in
the forest. More precisely, given N cases in the training dataset, it samples,
with replacement, k < N subsets among all possible cases.

In addition, another crucial technique is implemented in each tree of
the forest to reduce the problems of low variance and increase the model’s
generalization capability, which is called randomized subspace. The randomized
subspace is also applied to the bagging strategy for each tree in the forest. A
random sample of the input features and training data is employed in each
tree. It is straightforward to expect that each tree in the forest captures
slightly different information from the whole dataset, constructing a forest that
could provide more variability and robustness to the model. For classification
problems, the result of a random forest would be the class with the most
appearance in the forest. For regression, the result would be the mean of the
outcome of each forest. Figure 2.1 shows a simple diagram explaining how the
random forest algorithm works.

Figure 2.1: Random Forest diagram.
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2.5
Neural Networks

Artificial neural networks are inspired by the functioning of the human
brain and its smallest building parts, the biological neurons. A neuron, also
called unity, node or cell, is an information-processing unity [37] that is
essential to a neural network.

The Perceptron is the simplest neural network, and consists of one or
more inputs, a neuron and only one output. Mathematically, a Perceptron takes
numeric inputs {x1, x2, · · · , xn}, multiplies them with the respective weights
{w1, w2, · · · , wn} and finally add them together with the bias b, producing a
result that is the input to an activation function f(x), as it shows equation
2-5.

f(
n∑

i=1
wi × xi + b) (2-5)

The values for the weights wi and the bias b are randomly initiated and
than adjusted by a process named supervised training.

Perceptron are the building components of neural networks. The Per-
ceptron can be understood as a neural network of one neuron. When several
neurons are combined, they form the architecture of neural network. Formally,
the architecture is the way the units are connected and arranged.

These neural networks can be used to handle time series predictions, but
they may not always be the best choice. One of the main limitations of simple
neural networks is that they may struggle to capture the complex patterns
and dependencies present in time series data, especially when the data is non-
linear or non-stationary. Additionally, simple neural networks are susceptible
to overfitting, which can occur when the model is too complex and fits the
training data too closely, leading to poor generalization performance on unseen
data.

Another problem faced by neural networks is the vanishing gradient
problem, specially when working with long-term dependency sequences. This
is because during the backpropagation process, the gradients computed at each
layer of the network are multiplied together as they are propagated backwards
towards the input layer. When the gradients are very small, this multiplication
results in a gradient that approaches zero, making it difficult for the model to
learn the relevant features and parameters.

This problem is particularly acute in feedforward neural networks because
they lack the ability to store information about previous inputs. In contrast,
recurrent neural networks (RNNs) address this issue by using a recurrent
connection that allows the network to maintain a "memory" of past inputs.
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However, even RNNs can still face the vanishing gradient problem when the
sequence of inputs is very long.

On the other hand, there are other machine learning algorithms that are
specifically designed for time series analysis and can outperform simple neural
networks. For example, the long short-term memory (LSTM) networks are
more suitable for capturing the temporal dependencies present in time series
data.

2.6
LSTM

Figure 2.2 shows the LSTM neural network architecture unrolled over
time. The current time step is the cell in the middle. We use t to refer to
actual time step. So to its left is the LSTM cell at the previous time step t − 1
while the one to the right is the cell at one step ahead, t+1. In the illustration
below, each line carries a vector from the output of one node to the inputs of
others. LSTMs have a structure similar to others recurrent neural networks,
but the repeating cell has a different layout. Instead of a single neural network
layer, there are four gates, interacting to produce the output.

Figure 2.2: LSTM architecture unrolled over time.

Figure 2.3 shows the LSTM cell. The gates are a way to optionally let
information through. They are composed out of a activation function neural net
layer and a pointwise multiplication operation. The sigmoid layer output is a
number between zero and one, describing how much of each information should
be let through. If the output is zero, nothing is passed beyond; if the output
is one, all information is passed beyond. In all equations below, the lowercase
variables represent vectors, and uppercase variables represent matrices.

Each cell receives three information. In the bottom left corner, it receives
the input Xt and the output from the previous time step ht−1. This information
are run into the four gates. The third input ct−1 is represented as a straight
arrow through the upper part of the cells. This is the cell state and enables
the LSTM to remember long term dependencies with a considerably smaller
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Figure 2.3: LSTM architecture unrolled over time.

chance for the vanishing and exploding gradient problems seen in traditional
RNN [38].

The first gate is the forget gate, showed in Figure 2.4. It considers the
current inputs Xt and the output from the previous time step ht−1. The product
of the current input and the weights are linear transformed by sigmoid function
(Equation 2-6 to a matrix with values between 1 and 0 (Equation 2-7. Matrix
Wf contain the weights of Xt and ht−1. From here the cell state from the
previous cell is multiplied elementwise with the forget gate. One may think
of the forget gate as a filter, that erases or decreases values that we want to
delete or degrade from previous cell state, the memory of LSTM.

σ(x) = 1
1 + ex

(2-6)

ft = σ(Wf · [ht−1, xt] + bf ) (2-7)
The input gate decide how much of the new information will be included

in the memory of LSTM. In Equation 2-8, the new inputs of the cell are
concatenated and processed by a Sigmoid function, while in Equation 2-9 they
are processed by a hyperbolic tangent function. The results of each equation
are multiplied point by point, and the new information are ready to update
the memory of LSTM.

it = σ(Wi · [ht−1, xt] + bi) (2-8)

C̃ = tanh(Wc · [ht−1, xt] + bc) (2-9)
The cell state is not more than a vector in a mathematical sense. It can

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



Chapter 2. Machine Learning 27

Figure 2.4: The Forget gate.

be thought of as way for information that runs through the whole chain of cells
with only some linear interactions, as shows Figure 2.6. It allows the LSTM
to remember long term input dependencies. It is possible to read, write and
delete information to this internal memory. The key to solving the vanishing
gradient problem is that the new information is added and not multiplied to
the cell state, as shows Equation 2-10 Addition distribute gradients equally
and the chain rule does not apply within the backpropagation.

Ct = ft · Ct−1 + it · C̃ (2-10)

The “Cell State” and the “Hidden State” have different functions. The
cell state is meant to aggregate data from all previous time-steps that have been
processed, while the hidden state is meant to encode some characterization of
the most recent time-step’s data. It is important to note that the hidden state
is not equal the output or prediction of the previous time-step.

Finally it is time to produce a output ht. The output gate will run a
sigmoid layer to the inputs (Equation 2-11) and an hyperbolic tangent into
the cell state (Equation 2-12). Then, both results are multiplied point y point
and the output is passed ahead.

ot = σ(Wo · [ht−1, xt] + bo) (2-11)

ht = ot · tanh(Ct) (2-12)
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Figure 2.5: The Input gate.

Figure 2.6: The cell state.
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Figure 2.7: The Output gate.
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3
Proposed Methodology

This chapter outlines the approach taken to evaluate the performance of
two machine learning algorithms, Random Forest and Long Short-Term Mem-
ory (LSTM), in predicting oil production as an outcome variable. This study
aimed to evaluate the effectiveness of Random Forest and LSTM in predict-
ing time series, based on different reservoir datasets. This chapter details the
workflow of this research, the methodology used for data preparation and the
algorithm selection criteria, and the parameter tuning process for each machine
learning technique used.

3.1
Problem description

Managing reservoir information plays a vital position in oil industry. The
decisions to develop and manage the facilities are based on this kind of analysis
chasing good oil production results. With the progress in technology and data
acquisition sensors, the exploration, drilling, and production operations have
become abundant static data generators. For a single well, there are several
pieces of data available, including downhole pressure, downhole temperature,
average tubing information, annular pressure, gas rate, oil rate, water rate for
injection and production and geological characteristics.

The oil field production is non-linearly connected to all this data, so the
attempts to predict the oil production using machine learning techniques usu-
ally use some of this data. Lu et all [39] used machine learning to predict oil
production from Shale reservoirs using geological information and technical
information such as the horizontal well length. Elmabrouk, Shirif and May-
orga [40] use neural networks to predict oil production with five inputs: oil
production rate, gas production rate, future water injection rate and the fu-
ture number of oil wells in production and injection. Cheng and Yang [41] feed
neural networks with oil pressure, casing pressure, water content, production
days, and monthly oil production to forecast the oil production of a well.

In this work, we investigate the performance of Random Forest algorithm
and the LSTM neural networks in predicting oil rate daily production of a
single well. All the models were tested in four different datasets. Initially,
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we consider the daily oil rate as a time series dataset and uses the Random
Forest algorithm to make one time step ahead predictions. Besides the daily
oil production, no other input was given to the model.

After obtaining favorable outcomes forecasting one time step ahead, we
started using the model to predict multiple time steps ahead, with acceptable
results. At this point, we decided to incorporate the downhole pressure into the
inputs. Although the Random Forest had shown satisfactory results with two
or more features in the inputs, the time series dependence could be affected.
For that reason, we decided to move on to a more complex machine learning
algorithm, capable of handling multiple features and more adequate to work
with time series datasets, the LSTM neural networks.

Initially, we built a simple LSTM architecture to compare the perfor-
mance with the previous results from Random Forest algorithm. Therefore, in
this first LSTM model, the only input was the daily oil production. After that,
we built a more sophisticated architecture to handle the oil rate production
and the downhole pressure as inputs. The model was used to forecast single
and multiple time steps ahead, proving to be more adequate than the Random
Forest algorithm to forecast multiple time steps ahead.

Finally, we decided to include the downhole pressure from the days we
were about to predict as input. More specifically, if the model is about to
predict x time steps ahead, the x downhole pressure information associated
to each of these time steps are incorporated into the inputs. In this case, the
model receives three inputs: the oil rate production, the past downhole pressure
and the future pressure.

3.2
Random Forest Methodology

The first step in building a machine learning model is to preproces the
datasets to ensure that they are properly formatted and ready for use in a
machine learning algorithm. Before working on the data organization, it is
essential to ensure that the data is properly cleaned, removing any missing or
erroneous values. For synthetically generated datasets, this is not a problem,
For real datasets, it is common to find missing or corrupted data points, since
oil fields are complex systems with many variables and data sources that can
fail or malfunction, leading to gaps in the data. After cleaning datasets, the
next step is to restructure a time series dataset into inputs for the Random
Forest Algorithm.

Consider a time series dataset with n time steps observations. We create
a subset X containing vectors Xi, i ∈ N, of size L > 0 corresponding to the
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Figure 3.1: Example of 500 days observations dataset organization

past L observations of the time series. For the target (or labels) set Y , we
create vectors Yi, i ∈ N, of length F > 0, corresponding to the immediate F

forward time steps of the time series related to vector Xi. In this study, we
refer to the length of each vector Xi, denoted by L, as look-back and to the
length of vector Yi, denoted by F , as forward-days.

For example, consider a dataset with 500 daily observations of oil
production. Lets restructure it with look-back= 10 and forward-days= 1. In
other words, the model will predict a single time step ahead (F = 1 day) and
the inputs to make this prediction are the immediate previous ten days L = 10
observations of oil production. Since L = 10, the input vectors have length 10.
Moreover, since forward-days = 1, the target vectors have length = 1 and are,
therefore, single data points. Figure 3.1 displays a representation of the input
vectors and the target data points for a 500 days example with look-back = 10
and forward-days = 1.

After restructuring the dataset into inputs and labels to fit the random
forest algorithm, the data needs to be split into training and testing sets to
evaluate the performance of the model accurately. Since time series data is
dependent on time, we decided to split the data in chronological order, with
the training set containing data from earlier time periods and the testing set
containing data from later periods. In the four datasets used to evaluate the
model, we consider, approximately, the first 70% of data for the training set
and the remaining 30% as test set.

The Random Forest Regression algorithm was implemented using the
Scikit-Learn package, which includes some default parameters. If not specified,
the number of trees in the forest, usually known as n_estimators, is 100.
The function to measure the quality of a split is the Squared error shown
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in equation 3-1, where N is the number of samples being tested, yi is the
model prediction, and ŷ is the actual value.

1
N

N∑
i=1

(yi − ŷ)2 (3-1)

By default, the minimum number of samples required to split an internal
node is two, and all the nodes are expanded until all leaves are pure or until
all leaves contain less than two samples. The minimum number of samples
required at a leaf node is 1. The minimum weighted fraction of the total sum
of weights (of all the input samples) required at a leaf node is 0. look-back is
the number of time steps to consider when looking for the best split. If not
specified, there is no limit for the number of leaf nodes. A node will be split if
this split induces a decrease of the impurity greater than ni that is calculated
as shown in equation 3-2, where nij is the importance of node j, Wj is weighted
number of samples reaching node j, Cj is the impurity value of node j, Wleft(j)

(resp. Wright(j)) is the weighted number of samples reaching child node from
left (resp. right split) on node j and Cleft(j) (resp. Cright(j)) is is the impurity
value of child node from left (resp. right split) on node j. By default, bootstrap
samples are used when building trees, and the number of samples in a subset,
usually called max_samples, is equal to the number of samples in the original
dataset.

nij = WjCj − Wleft(j)Cleft(j) − Wright(j)Cright(j) (3-2)
Scikit-learn package also includes GridSearch, a tuning technique that

finds optimum parameters. It is an exhaustive search performed with specific
sets of parameter values. GridSearch builds a model for every combination of
parameters specified in the collection and evaluates each model, returning the
set of values with best results. In this work, we use GridSearch to optimize
the n_estimators and max_samples values, and all other parameters are set
as default.

Although the Random Forest algorithm showed good results in forecast-
ing the oil daily production, especially when forward-days = 1, the model has
some limitations. Since it was not planned for handling time series data, the
Random forest does not take into account the temporal dependencies between
the data points. The time series observations are restructured into linear se-
quences (vectors Xi) in an attempt to preserve the time information of datasets.

Nevertheless, since the input of the Random Forest is arranged as vectors,
to insert a second feature (pressure, for example) in the inputs, it would
be necessary to merge the sequence of oil production observations and the
sequence of pressure observations into one single sequence. However, this would
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mess the sequence organization, which is the only thing that carries the time
information on it. Moreover, oil reservoir datasets can admit a large number
of features, as they often include information about properties of the well and
production data such as flow rates, pressures, and temperatures.

Considering these limitations, we choose to follow the study with a
machine learning model that was designed to deal with time series datasets,
the LSTM neural network.

3.3
LSTM Methodology

Likewise the Random Forest, the first step to build an LSTM model is
to preprocess the datasets. The procedure is very similar to the one used in
the Random Forest, the only difference is that now, the inputs are organized
as matrix, and not vectors.

Consider a time series dataset with n time steps and k features. We create
a subset X := {Xi} containing matrix (Xab), a, b ∈ N, 0 ≤ a ≤ k, 0 ≤ b ≤ L,
L > 0, corresponding to the past L observations of k features in the time
series. For the target (or labels) set Y , we create vectors Yi, i ∈ N, of length
F > 0, corresponding to the immediate F forward time steps of the time series
related to the matrix Xi. Analog to the Random Forest model, we refer to the
number of columns in each matrix Xi, denoted by L, as look-back and to the
length of vector Yi, denoted by F, as forward-days.

For example, consider a dataset with 500 daily observations of oil
production and pressure. Lets restructure it with look-back= 10 and forward-
days= 1. In other words, the model will predict a single time step ahead
(F = 1 day) and the inputs to make this prediction are the immediate previous
ten days L = 10 observations of oil production and pressure. Since we have
two features and L = 10, the inputs matrix has two rows and ten columns.
Moreover, since forward-days = 1, the target vectors have size = 1 and are,
therefore, single data points. Figure 3.2 displays a representation of the input
matrix and the target data points for a 500 days example, with look-back = 10
and forward-days = 1.

After restructuring the dataset into inputs and labels to fit the random
forest algorithm, the data needs to be split into training and testing sets to
evaluate the performance of the model accurately. Likewise the Random Forest,
in the four datasets used to evaluate the model, we consider, approximately,
the first 70% of data for the training set and the remaining 30% as test set.

The LSTM algorithm was implemented using the Keras package, which
includes some default parameters. If not specified, the activation function is
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Figure 3.2: Example of 500 days observations dataset organization.

the hyperbolic tangent, and recurrent activation function is Sigmoid. There is
also a default weights matrix, used for the linear transformation of the inputs.
The default batch-size, the number of samples that are processed together in a
single forward/backward pass of a neural network during training, is 32. The
loss function, the number of neurons in each layer, the number of epochs and
the optimization algorithm for training must always be specified.

Throughout the study, we built different LSTM architectures that re-
ceived as input the most recent data of x days and predicted as outputs y days
ahead. As said before, We refer to x and y as look-back and forward-days, re-
spectively. At first, the information given as input was only oil rate production
(bbl/day). Later, the downhole pressure (kgf/cm2) data was incorporated into
the inputs. To build the model, we use different configurations of layers and
neurons, but the loss function is always MSE (Equation 3-1), the optimization
algorithm is the stochastic gradient descent, and batch size is always two.

3.4
Datasets

For experiments with LSTM and random forest regressor, we investigate
four different datasets, three of them synthetically generated and one from a
public real dataset, in order to provide controlled results for the architectures
under analysis.

3.4.1
Dataset 1, Dataset 2 and Dataset 3

The first three datasets are synthetically generated and consider a
reservoir with dimensions of 5000m × 5000m × 15m, permeability of 500mD,
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Dataset 1 Dataset 2 Dataset 3

Pr
es

su
re

275kg/cm2 day 1 to 731 day 1 to 731 day 1 to 731
250kg/cm2 day 732 to 1461 day 732 to 1826 day 732 to 1826
260kg/cm2 day 1827 to 2373
225kg/cm2 day 1462 to 2192 day 1827 to 2373
200kg/cm2 day 2193 to 2922 day 2374 to 2738 day 2374 to 2738
175kg/cm2 day 2923 to 3653 day 2739 to 3653 day 739 to 3653

Table 3.1: Variation of pressure in Dataset 1, Dataset 2, and Dataset 3.

initial pressure of 300kg/cm2, final pressure of 175kg/cm2, and ten years of
operation, which results in 3653 days of data. The model used to genarete
theese datsets considers aspecified pressure, which means that an human
operator will decide the pressure that the field will be operating. All three
datasets admit the same initial and final pressire, but each one considers a
different pressure variation over time, as shown in table 3.1. Figures 3.3 and
3.4 show Dataset 1 and Dataset 2, respectively. Dataset 3 includes 546 days of
well closure, and its presented in Figure 3.5.

Figure 3.3: Dataset 1.

3.4.2
Dataset 4: Volve

The offshore Volve reservoir [42], located in the Norwegian North Sea,
was discovered in 1993. The field is in the sandstone of the Middle Jurassic
age at a depth around 2900m. The development plan was approved in 2005
and productions started in 2008, achieving a peak oil rate of 56,000 bbl/day.
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Figure 3.4: Dataset 2.

The field was decommissioned in 2016 with a cumulative oil production of 63
million barrels.

Equinor and the Volve license partners, ExxonMobil and Bayerngas, have
disclosed all seismic records and oil production data from this reservoir in an
open repository [42]. Since real data are often prohibitive or challenging to
be obtained, the multi-terabyte Volve dataset, containing lots of information
on a complete lifetime of a reservoir exploitation project, has been widely
used by data scientists and reservoir engineers in their work involving the
oil and gas industry. Moreover, academic researchers could test the different
complex models they develop in a real field case using the Volve dataset. It has
been a substance for research in drilling data, geometric modeling, scientific
visualization, and Petroleum reservoir modeling. Tunkiel et al. [43] explored the
dataset, described common obstacles found in the Volve dataset, and presented
approaches for overcoming all the issues. Gupta et al. [44] developed a complex
workflow to identify the formation type around the bit from surface drilling
data. Sun et al. [45] build a 3D mechanical earth model of the Volve field.

This study uses only the data from well 15/9-F-1 C, contained in the
Volve Field which is an uninterrupted 746 days sequence of the oil production
and pressure information, shown in Figure 3.6.
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Figure 3.5: Dataset 3.

Figure 3.6: Dataset 4: Well "15/9-F-1 C" daily oil production data contained
in the Volve dataset.
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4
Results

In this chapter, we describe the performance achieved by each Random
Forest algorithm and LSTM architecture used in this study. To measure the
accuracy of the proposed models, we use Root Mean Square Error (RMSE), a
classical way to evaluate the error of a forecasting model. It represented the
square root of the mean of the differences between predicted and observed
values, as shown in equation 4-1.

In all following results, for Datasets 1, 2 and 3, the first 2500 days are
used as a training set, and the remaining 1153 days as a test set. In the Dataset
4, the Volve field, the first 500 days are used as a training set and the remaining
246 days as a test set.

RMSE =
(

1
Nm

Nm∑
k=1

(mtrue,k − mj,k)2
)1/2

, (4-1)

4.1
Random Forest Prediction

In this study, we settle the Random Forest parameters n_estimators as
100, 500, or 1000 and max_samples as 50%, 80%, or 100% of the original
dataset. All other parameters are used as available in the Python package
Scickit-Learn. Besides, we structure the dataset with three different values for
look-back, for each value of forward-days. Hence, for each look-back, we use
GridSearch to find the best n_estimators and max_samples. Thus, for each
look-back value, GridSearch builds different models and returns the best one,
according to RMSE metrics. Initially, the Random Forest Algorithm was used
for single time steps prediction, wich means forward-days = 1. Than, we use
the algorithm to forecast 10, 50 and 100 time steps ahead.

Note that when look-back is settled as t, it is necessary t time steps to
forecast forward-days time steps ahed, so different values for look-back generate
different amounts of predictions even if the test set always has the same size.
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4.1.1
Forward-days = 1

The daily oil rate production was the only input for the Random
Forest algorithm. In each dataset, the original time series oil production is
restructured into a sliding window dataset, where look-back time steps are
used to predict the immediately next time step. For forward-days, we set look-
back = {10, 25, 50}. Table 4.1 summarizes the results presented in this section.
We present the best parameters selected by GridSearch and the computed
value for the RMSE metric for each look-back, in each dataset.

look-back max_samples n_estimators RMSE

Dataset 1
10 50% 1000 09.64
25 50% 500 09.84
50 50% 100 10.21

Dataset 2
10 50% 500 22.87
25 50% 100 25.07
50 50% 1000 24.85

Dataset 3
10 50% 100 36.37
25 50% 100 42.04
50 80% 100 43.97

Dataset 4
10 80% 100 76.65
25 80% 100 81.10
50 50% 1000 73.07

Table 4.1: Summary of the Random Forest results with look-back = {10, 25, 50}
and forward-days = 1.

For Dataset 1, the best outcome was with look-back= 10, with
n_estimators as 1000, max_samples as 50% and RMSE = 09.64. Figure 4.1
shows the results in test set for each look-back and Figure 4.2 displays the
best result for all Dataset 1. Although the training dataset provides physical
anomalies due to the well opening and shut, after the well is open, around day
2900, the algorithm found troubles when forecasting. It might happen because
of the considerable difference in the values transition in the dataset. Hence, it
is reasonable to expect some mismatch in prediction and observations when
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physical phenomena cause data anomalies. Remark that no physics informa-
tion is provided for the algorithm. One may conclude that the Random Forest
algorithm might be sensitive to huge data oddities.

Figure 4.1: Random Forest oil production predictions in test set from Dataset
1 with look-back = {10, 25, 50}.

Figure 4.2: Oil production forecast with Random Forest in Dataset 1 with
look-back =10, n_estimators=1000, max_samples as 50% and RMSE= 09.64

For Dataset 2, the best outcome was with look-back= 10, with
n_estimators as 500, max_samples as 50% and RMSE = 22.87. Figure 4.3
shows the results in test set for each look-back and Figure 4.4 displays the
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best result for all Dataset 2. Note that dataset 2 presents higher complexi-
ties than the previous one. In this case, the oil rate and time separating well
opening and shut are discontinuous. In that case, the oil rate is maintained
continuously uniformly in time. Although the prediction is not as good as the
one presented before, one may note the consistency in forecasting the decay
in oil production. However, when the well is open, the pike presents higher
turbulence than in the previous experiment. It may indicate that the Random
Forest algorithm could not capture the physical information of the problem
when joining with reservoir management decisions, which is expected since
well opening and shutting are decided by a human.

Figure 4.3: Random Forest oil production predictions in test set from Dataset
2 with look-back = {10, 25, 50}.
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Figure 4.4: Oil production forecast with Random Forest in Dataset 2 with
look-back =10, n_estimators=500, max_samples as 50% and RMSE= 22.87

For Dataset 3, the best outcome was with look-back= 10, with
n_estimators as 100, max_samples as 50% and RMSE = 36.37. Figure 4.5
shows the results in test set for each look-back and Figure 4.6 displays the best
result for all Dataset 3. In this case, in contrast with what happens in dataset 2,
one may observe that the model outcomes are not sharp. Remark that dataset
2 provides more reservoir management and data physics information. There-
fore it is expected that dataset 3 presents low performance compared to the
previous ones.
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Figure 4.5: Random Forest oil production predictions in test set from Dataset
3 with look-back = {10, 25, 50}.

Figure 4.6: Oil production forecast with Random Forest in Dataset 3 with
look-back =10, n_estimators=100, max_samples as 50% and RMSE= 36.37

For Dataset 4, the best outcome was with look-back= 50, with
n_estimators as 1000, max_samples as 50% and RMSE = 73.07. Figure 4.7
shows the results in test set for each look-back and Figure 4.8 displays the best
result for all Dataset 4. This dataset is the most challenging because it relates
to a real field case. It is expected that the predictions are not sharply matched
with observations. Moreover, predicting oil field production with many system
perturbations is difficult. Nevertheless, the Random Forest algorithm could
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reasonably catch the necessary information to predict and reproduce the oil
field performance.

Figure 4.7: Random Forest oil production predictions in test set from Dataset
4 with look-back = {10, 25, 50}.

Figure 4.8: Oil production forecast with Random Forest in Dataset 4 with
look-back = 50, n_estimators=1000, max_samples as 50% and RMSE= 73.07

The approach presented in this section aims to verify if the suggested
approach is suitable for predicting oil field performance. We tested different
values for look-back and forward-days and simulated different values for the
Random Forest algorithm. The presented results state that the Random Forest
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algorithm, although simple, was a good ally when predicting oil production.
It could learn from the training dataset relevant features and physics from the
problem, which can be noticed in datasets 1, 2, and 3. The most complex was
dataset 4, using a real field case to train and test the algorithm. Even with
limited and perturbated data, it was possible to reproduce similar results to
the observations.

4.1.2
Forward-days = 10

The primary objective of this section is to compare the previous approach
of predicting one value to predicting a sequence. In the previous approach,
we concluded that the Random Forest is suitable for predicting one time
step ahead in the presented datasets. On the other hand, adequate reservoir
management might need forecasting multiple time steps in the future. As a
result, we intend to verify if the suggested approach is suitable for this new
problem. Note that the previous technique trained the model to produce one
output. Currently, it is trained to offer a succession of values that must have
sequence features, as expected in a time-series application.

As in all other Random Forest results of this work, the daily oil rate
production was the only input for the algorithm. For In each dataset, the
original time series oil production is restructured into a sliding window dataset,
where look-back time steps are used to predict the immediately 10 next time
steps. For forward-days = 10, we maintain look-back = {10, 25, 50}. Table
4.1 shows the best values for max_samples and n_estimators returned by
GridSearch and the respective RMSE for each look-back, in each dataset.
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look-back max_samples n_estimators RMSE

Dataset 1
10 50% 500 4.21
25 50% 1000 02.48
50 50% 100 04.21

Dataset 2
10 50% 500 28.38
25 50% 100 31.57
50 50% 1000 32.06

Dataset 3
10 50% 100 43.49
25 50% 100 49.57
50 80% 100 52.92

Dataset 4
10 50% 100 167.65
25 50% 100 225.72
50 50% 1000 137.20

Table 4.2: Summary of the Random Forest results with look-back = {10, 25, 50}
and forward-days = 10.

For Dataset 1, the best outcome was with look-back= 25, with
n_estimators as 1000, max_samples as 50% and RMSE = 02.48. Figure 4.9
shows the results in test set for each look-back and Figure 4.10 displays the
best result for all Dataset 1. As presented in the previous section, one may ob-
serve similar turbulence in this approach when predicting right after the well is
open again. The turbulence is alleviated when time moves forward. Thus, for
dataset 1, increasing forward-days from 1 to 10 did not cause any problems.
Increasing the data available for training might improve the presented results
for dataset 1.
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Figure 4.9: Random Forest oil production predictions in test set from Dataset
1 with look-back = {10, 25, 50} and forward-days = 10.

Figure 4.10: Oil production forecast with Random Forest in Dataset 1 with
look-back =25, n_estimators=1000, max_samples as 50% and RMSE= 2.48

For Dataset 2, the best outcome was with look-back= 10, with
n_estimators as 1000, max_samples as 50% and RMSE = 28.38. Figure 4.11
shows the results in test set for each look-back and Figure 4.12 displays the
best result for all Dataset 2. In this case, similar to the conclusion of the ex-
periment of dataset 1, increasing the forward-days to ten did not cause much
trouble in predicting oil field production. Again, the suggested application to
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alleviate the problems of lack of physics informed in the training data, one
must increase the available data, including more possible conditions.

Figure 4.11: Random Forest oil production predictions in test set from Dataset
2 with look-back = {10, 25, 50} and forward-days = 10.

Figure 4.12: Oil production forecast with Random Forest in Dataset 2 with
look-back =10, forward-days = 10, n_estimators=1000, max_samples as 50%
and RMSE= 28.38

For Dataset 3, the best outcome was with look-back= 10, with
n_estimators as 500, max_samples as 50% and RMSE = 43.49. Figure 4.13
shows the results in test set for each look-back and Figure 4.14 displays the
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best result for all Dataset 3. As evaluated in the simulations presented in this
section, the realization for dataset 3 is not different from the one observed in
the previous section.

Figure 4.13: Random Forest oil production predictions in test set from Dataset
3 with look-back = {10, 25, 50} and forward-days = 10.

Figure 4.14: Oil production forecast with Random Forest in Dataset 3 with
look-back =10, forward-days = 10, n_estimators=1000, max_samples as 50%
and RMSE= 43.49

For Dataset 4, the best outcome was with look-back= 50, with
n_estimators as 1000, max_samples as 50% and RMSE = 137.20. Figure 4.15
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shows the results in test set for each look-back and Figure 4.16 displays the
best result for all Dataset 4.

Figure 4.15: Random Forest oil production predictions in test set from Dataset
4 with look-back = {10, 25, 50} and forward-days = 10.

Figure 4.16: Oil production forecast with Random Forest in Dataset 4 with
look-back =10, forward-days = 10, n_estimators=1000, max_samples as 50%
and RMSE= 137.20

Again, the results are similar to those presented in this section. We may
conclude that the forward-days is not a sensitive parameter in the proposed
strategy to predict oil production. However, it is reasonable to expect that the
as bigger the value set for forward-days gets, the worse model outputs quality.
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This conjecture could not be proved by increasing forward-days from 1 to 10.
In the following section, we will increase forward-days to 50, then to 100, and
check the model results with different values for look-back.

4.1.3
Forward-days = 50

To predict 50 time steps ahead, we decided to use look-back =
{25, 50, 100}. For each dataset, the original time series oil production is re-
structured into a sliding window dataset, where look-back time steps are used
to predict the immediately 50 next time steps. Table 4.3 shows the best values
for max_samples and n_estimators returned by GridSearch and the respective
RMSE for each look-back, in each dataset.

look-back max_samples n_estimators RMSE

Dataset 1
25 50% 100 34.35
50 50% 1000 35.71
100 50% 100 64.00

Dataset 2
25 50% 100 45.19
50 50% 1000 48.44
100 50% 100 69.03

Dataset 3
25 50% 500 71.73
50 50% 100 72.06
100 80% 100 100.37

Dataset 4
25 50% 1000 203.41
50 50% 100 208.31
100 50% 1000 259.83

Table 4.3: Summary of the Random Forest results with look-back =
{25, 50, 100} and forward-days = 50.

For Dataset 1, the best outcome was with look-back= 25, with
n_estimators as 100, max_samples as 50% and RMSE = 34.35. Figure 4.17
shows the results in test set for each look-back and Figure 4.18 displays the
best result for all Dataset 1.
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Figure 4.17: Random Forest oil production predictions in test set from Dataset
1 with look-back = {25, 50, 100} and forward-days = 50.

Figure 4.18: Oil production forecast with Random Forest in Dataset 1 with
look-back =25, forward-days = 50, n_estimators=100, max_samples as 50%
and RMSE= 34.35

For Dataset 2, the best outcome was with look-back= 25, with
n_estimators as 100, max_samples as 50% and RMSE = 45.19. Figure 4.19
shows the results in test set for each look-back and Figure 4.20 displays the
best result for all Dataset 2.
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Figure 4.19: Random Forest oil production predictions in test set from Dataset
2 with look-back = {25, 50, 100} and forward-days = 50.

Figure 4.20: Oil production forecast with Random Forest in Dataset 2 with
look-back =25, forward-days = 50, n_estimators=100, max_samples as 50%
and RMSE= 45.19

For Dataset 3, the best outcome was with look-back= 25, with
n_estimators as 500, max_samples as 50% and RMSE = 71.73. Figure 4.21
shows the results in test set for each look-back and Figure 4.22 displays the
best result for all Dataset 3.
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Figure 4.21: Random Forest oil production predictions in test set from Dataset
3 with look-back = {25, 50, 100} and forward-days = 50.

Figure 4.22: Oil production forecast with Random Forest in Dataset 3 with
look-back =25, forward-days = 50, n_estimators=500, max_samples as 50%
and RMSE= 71.73

For Dataset 4, the best outcome was with look-back= 25, with
n_estimators as 1000, max_samples as 80% and RMSE = 203.41. Figure 4.21
shows the results in test set for each look-back and Figure 4.24 displays the
best result for all Dataset 4.
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Figure 4.23: Random Forest oil production predictions in test set from Dataset
4 with look-back = {10, 25, 50} and forward-days = 50.

Figure 4.24: Oil production forecast with Random Forest in Dataset 4 with
look-back =25, forward-days = 50, n_estimators=1000, max_samples as 80%
and RMSE= 203.41

4.1.4
Forward-days = 100

To predict 100 time steps ahead, we decided to use look-back =
{50, 100, 200}. For each dataset, the original time series oil production is re-
structured into a sliding window dataset, where look-back time steps are used
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to predict the immediately 100 next time steps. Note that, for dataset 4, it
was not possible to structure the data with look-back = 200. Since the test
set has only 246 days, it is not possible to use 200 days to predict the next
100 days ahead. So for this dataset, it was only tested look-back = {50, 100}.
Table 4.4 shows the best values for max_samples and n_estimators returned
by GridSearch and the respective RMSE for each look-back, in each dataset.

look-back max_samples n_estimators RMSE

Dataset 1
50 50% 100 60.72
100 50% 100 45.67
200 50% 100 87.97

Dataset 2
50 50% 100 63.42
100 50% 100 69.25
200 50% 100 133.92

Dataset 3
50 80% 100 112.25
100 80% 100 135.11
200 50% 500 158.43

Dataset 4
50 50% 100 213.99
100 50% 100 213.91

Table 4.4: Summary of the Random Forest results with look-back = {10, 25, 50}
and forward-days = 100.

For Dataset 1, the best outcome was with look-back = 100, with
n_estimators as 100, max_samples as 50% and RMSE = 45.67. Figure 4.13
shows the results in test set for each look-back and Figure 4.14 displays the
best result for all Dataset 1. Note that the results presented for this dataset
differ from those presented in the previous sections, with forward-days equal
to 1 and 10. In this case, the expected fall after opening the well is delayed in
the model predictions. We observe this happening due to the model predicting
when the well will be shut or open, which is very unlikely to reproduce real
observations because this is not physics information, which is a human decision.
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Figure 4.25: Random Forest oil production predictions in test set from Dataset
1 with look-back = {50, 100, 200} and forward-days = 100.

Figure 4.26: Oil production forecast with Random Forest in Dataset 1 with
look-back = 100, forward-days = 100, n_estimators=100, max_samples as
50% and RMSE= 45.67

For Dataset 2, the best outcome was with look-back = 50, with
n_estimators as 100, max_samples as 50% and RMSE = 63.42. Figure 4.27
shows the results in test set for each look-back and Figure 4.28 displays the
best result for all Dataset 2.

As observed in the previous test case, when we select forward-days equal
to 100, the model could not present proper forecasting for oil production.
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The reason might be the same as discussed before, such as joining highly
complex physics information with the human decision to open and shut the
well. In addition, predicting 100 days might need the model to learn the best
from the data, which must provide all possible information to guarantee good
training. Nevertheless, providing such a quality dataset might be unfeasible
for the energy industry, where data acquisition might be costly and complex.

Figure 4.27: Random Forest oil production predictions in test set from Dataset
2 with look-back = {50, 100, 200} and forward-days = 100.

Figure 4.28: Oil production forecast with Random Forest in Dataset 2 with
look-back = 50, forward-days = 100, n_estimators=100, max_samples as 50%
and RMSE= 63.42
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For Dataset 3, the best outcome was with look-back= 50, with
n_estimators as 100, max_samples as 50% and RMSE = 63.42. Figure 4.27
shows the results in test set for each look-back and Figure 4.28 displays the
best result for all Dataset 3.

Figure 4.29: Random Forest oil production predictions in test set from Dataset
3 with look-back = {10, 25, 50} and forward-days = 100.

Figure 4.30: Oil production forecast with Random Forest in Dataset 3 with
look-back = 50, forward-days = 100, n_estimators=500, max_samples as 50%
and RMSE= 158.43

For Dataset 4, the best outcome was with look-back= 100, with
n_estimators as 1000, max_samples as 50% and RMSE = 213.91. Figure 4.31
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shows the results in test set for each look-back and Figure 4.32 displays the
best result for all Dataset 4.

The experiment run for dataset 4 displays the trouble found when setting
forward-days equal to 100. Many errors are involved in real field case problems,
such as measurement inaccuracies related to the sensors or the physics problem
itself. As a result, it is not expected that machine learning models, such
as the Random Forest, to reproduce reliable predictions. Adding all these
inaccuracies to the nonlinear application of increasing the forward-days to a
considerable value resulted in poor oil production forecasting. It is possible to
note a sequence characteristic in the prediction data, exposing the power of the
model and how it could detect features that happened in the look-back input
data and try to reproduce to the forward-days output data. However, the
results could be more reliable for accurate and precise reservoir management
applications. We suggest using deep learning to predict oil field performance to
escape this problem. Moreover, the long short-term memory model, commonly
known as LSTM, may greatly help due to its "memory" approach. Therefore,
the following sections expose the results obtained using the LSTM method.

Figure 4.31: Random Forest oil production predictions in test set from Dataset
4 with look-back = {50, 100} and forward-days = 100.
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Figure 4.32: Oil production forecast with Random Forest in Dataset 4 with
look-back = 100, forward-days = 100, n_estimators=1000, max_samples as
80% and RMSE= 213.91

4.2
LSTM predictions

The results in this section are organized according to the inputs given
to the model. Initally, we decided to build a simple LSTM model to compare
the outcomes with Random Forest results. Therefore, at first, the only input
was the oil rate production, just as in the Random Forest algorithm. Then,
the down hole pressure was incorporated to the inputs and finally, we decided
to give as an input, the down hole pressure from the days we were about to
predict.

During this work, we built two different LSTM models. The first is a
simple model, constructed with 1 LSTM layer with 8 neurons, activation
function Sigmoid, and 1 dense layer with forward-days neurons. Once this
model could not handle anymore the complexity of results we were trying to
achieve, we start using the second model, constructed with 1 LSTM layer with
64 neurons, 1 LSTM layer with 32 neurons, 1 dense layer with 16 neurons and
1 dense layer with forward-days neurons. In both LSTM layers, the Hyperbolic
Tangent was used as activation function. We refer to the first model as Model
1, and to the second model, we refer as Model 2. Although the tuning technique
GridSearch is also available for neural networks, we decided not to use it, since
it is an exhaustive search, it takes too much time for more complex algorithms,
such as the LSTM.
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The LSTM models were build using Python 3 with pack-
ages Scikit-learn version 0.24.2, and Keras version 2.7.0. The de-
fault paramenters for LSTM layers are activation function hy-
perbolic tangent (tanh), recurrent activation function Sigmoid.
glorotuniformtoinitializetheweightmatrix.Allinputswerescaledbetween0and1, andeachfeaturewastransformedseparately.

With LSTM models we make predictions with forward-days =
{1, 10, 50, 100} For forward-days = {1, 10} we restructure datasets with
look-back={10, 25, 50}, just as in Random Forest results. For forward-days
= {50, 100} we restructure datasets with look-back={x

2 , x, 2x}, where x refers
to forward-days.

4.2.1
Input: Oil rate

Initially we use Model 1 to forecast forward-days = {1, 10, 50, 100} and
the only input given to the model was the oil rate production.

4.2.1.1
Forward-days = 1

Table 4.5 shows the RMSE for each look-back, in each dataset for forward-
days = 1. For all datasets, the best RMSE was with look-back = 10. Figures
4.33, 4.34, 4.35, 4.36 shows the best results for Datasets 1, 2, 3 and 4,
respectively. Figure 4.37 shows the results in test set of Dataset 4 for each
look-back. For Datasets 1, 2 and 3, the results were so similar, that there is no
visual difference in test sets.
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look-back RMSE

Dataset 1
10 1.34
25 6.83
50 12.36

Dataset 2
10 3.75
25 06.82
50 12.89

Dataset 3
10 1.71
25 5.90
50 12.51

Dataset 4
10 12.64
25 67.69
50 64.81

Table 4.5: Summary of the LSTM Model 1 results when the input was the oil
rate production, with look-back = {10, 25, 50} and forward-days = 1.

Figure 4.33: LSTM Model 1 oil production forecast in Dataset 1, with forward-
days = 1, look-back = 10 and RMSE= 1.34.
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Figure 4.34: LSTM Model 1 oil production forecast in Dataset 2, with forward-
days = 1, look-back = 10 and RMSE= 03.73.

Figure 4.35: LSTM Model 1 oil production forecast in Dataset 3, with forward-
days = 1, look-back = 10 and RMSE= 1.71.
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Figure 4.36: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 1, look-back = 10 and RMSE= 12.64.

Figure 4.37: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 1, look-back={10, 25, 50}.

Using forward-days = 1 we observe a low RMSE. This result is expected
since the LSTM can adjust the error at each time step.
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4.2.1.2
Forward-days = 10

Table 4.6 shows the RMSE for each look-back, in each dataset for forward-
days = 10. For Datasets 1, the best RMSE was with look-back = 50. For
Datasets 2, 3 and 4, the best RMSE was with look-back = 10. Figures 4.38,
4.39, 4.40, 4.41 shows the best results for Datasets 1, 2, 3 and 4, respectively.
Figure 4.42 shows the results in test set of Dataset 4 for each look-back. For
Datasets 1, 2 and 3, the results were so similar, that there is no visual difference
in test sets.

look-back RMSE

Dataset 1
10 3.98
25 4.85
50 1.00

Dataset 2
10 3.12
25 06.21
50 09.71

Dataset 3
10 2.81
25 6.31
50 12.31

Dataset 4
10 102.66
25 105.55
50 125.97

Table 4.6: Summary of the LSTM Model 1 results when the input was the oil
rate production, with look-back = {10, 25, 50} and forward-days = 10.
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Figure 4.38: LSTM Model 1 oil production forecast in Dataset 1, with forward-
days = 10, look-back = 50 and RMSE= 1.00.

Figure 4.39: LSTM Model 1 oil production forecast in Dataset 2, with forward-
days = 10, look-back = 10 and RMSE= 03.12.
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Figure 4.40: LSTM Model 1 oil production forecast in Dataset 3, with forward-
days = 1, look-back = 10 and RMSE= 1.71.

Figure 4.41: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 1, look-back = 10 and RMSE= 102.66.
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Figure 4.42: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 10, look-back={10, 25, 50}.

Using forward-days = 10 we note a sensible increment in RMSE, com-
paring with the first cases using forward-days = 1, mainly in Dataset 4. For
Dataset 1, 2 and 3, the results are similar. However since Dataset 4 correspond
to a real data with more complex behavior, it is more sensible in prediction.

4.2.1.3
Forward-days = 50

Table 4.7 shows the RMSE for each look-back, in each dataset for forward-
days = 50.

Figure 4.43 shows the results of Model 1 for each look-back in test set of
Dataset 1 and Figure 4.44 shows the best outcome for all Dataset 1, with look-
back = 200. Figure 4.45 shows the results of Model 1 for each look-back in test
set of Dataset 2 and Figure 4.46 shows the best result for all Dataset 2, with
look-back = 25. Figure 4.47 shows the results of Model 1 for each look-back in
test set of Dataset 3 and Figure 4.48 shows the best outcome for all Dataset
3, with look-back = 100. Figure 4.49 shows the best outcome for all Dataset 4,
with look-back = 50.
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look-back RMSE

Dataset 1
25 12.99
50 10.92
100 15.86

Dataset 2
25 12.20
50 19.01
100 30.79

Dataset 3
25 11.97
50 23.04
100 13.53

Dataset 4
25 172.87
50 161.67
100 170.73

Table 4.7: Summary of the LSTM Model 1 results when the input was the oil
rate production, with look-back = {25, 50, 100} and forward-days = 50.

Figure 4.43: LSTM Model 1 oil production forecast in Dataset 1, with forward-
days = 50, look-back={25, 50, 100}.
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Figure 4.44: LSTM Model 1 oil production forecast in Dataset 1, with forward-
days = 50, look-back = 50 and RMSE= 10.96.

Figure 4.45: LSTM Model 1 oil production forecast in Dataset 2, with forward-
days = 50, look-back={25, 50, 100}.
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Figure 4.46: LSTM Model 1 oil production forecast in Dataset 2, with forward-
days = 50, look-back = 25 and RMSE= 12.20.

Figure 4.47: LSTM Model 1 oil production forecast in Dataset 3, with forward-
days = 50, look-back={25, 50, 100}.
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Figure 4.48: LSTM Model 1 oil production forecast in Dataset 3, with forward-
days = 50, look-back = 100 and RMSE= 11.97.

Figure 4.49: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 50, look-back = 10 and RMSE= 161.67.

Note that the results for Dataset 4 was not satisfactory. Figure 4.49 shows
the Model 1 results for forward-days = 50 predictions. For that reason, we
decided to use Model 2 to forecast forward-days = 50 in Dataset 4. Table 4.8
shows the RMSE of Model 2 for each look-back, in Dataset 4 with forward-days
= 50. Figure 4.50 shows the results with best RMSE in Dataset 4, for Model 2
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forward-days = 50 predictions. Figure 4.51 shows the results in Dataset 4 test
set for each look back and forward-days = 50.

look-back RMSE

Dataset 4
25 284.89
50 271.32
100 290.13

Table 4.8: Summary of the LSTM Model 2 results when the input was the
oil rate production, with look-back = {25, 50, 100} and forward-days = 50 for
Dataset 4.

Figure 4.50: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 50, look-back = 50 and RMSE= 271.32.
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Figure 4.51: LSTM Model 2 oil production forecast in Dataset 4, with forward-
days = 50, look-back={10, 25, 50}.

The results indicate that datasets 1, 2 and 3 reasonably tolerate forecasts
up to 50 days. They are synthetic data with a certain periodicity behavior that
the network captures with reasonable quality. For the case of example 4, the
prediction was not acceptable, due to its greater complexity.

4.2.1.4
Forward-days = 100

Table 4.12 shows the Model 1 RMSE for each look-back, For Datasets 1,
2 and 3 and forward-days = 100. Since Dataset 4 has only 746 days, there is
not enough data to structure with look-back = 200 and forward-days = 100.
For that reason, we only use look-back = {50, 100}. Table 4.10 displays the
Model 2 RMSW for each look-back in Dataset 4.

Figure 4.52 shows the results of Model 1 for each look-back in test set
of Dataset 1 and Figure 4.53 shows the best outcome for all Dataset 1, with
look-back = 200. Figure 4.54 shows the results of Model 1 for each look-back
in test set of Dataset 2 and Figure 4.55 shows the best result for all Dataset 2,
with look-back = 100. Figure 4.56 shows the results of Model 1 for each look-
back in test set of Dataset 3 and Figure 4.57 shows the best outcome for all
Dataset 3, with look-back = 100. Figure 4.58 shows the results of Model 2 for
each look-back in test set of Dataset 4 and Figure 4.59 shows the best outcome
for all Dataset 1, with look-back = 200.
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look-back RMSE

Dataset 1
50 23.93
100 20.07
200 17.09

Dataset 2
50 39.17
100 19.24
200 28.80

Dataset 3
50 20.23
100 17.99
200 26.87

Table 4.9: Summary of the LSTM Model 1 results when the input was the oil
rate production, with look-back = {25, 50, 100} and forward-days = 100.

look-back RMSE

Dataset 4
50 237.97
100 209.66

Table 4.10: LSTM Model 2 results when the input was the oil rate production,
with look-back = {50, 100} and forward-days = 100 for Dataset 4.

Figure 4.52: LSTM Model 1 oil production forecast in Dataset 1, with forward-
days = 100, look-back={50, 100, 200}.
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Figure 4.53: LSTM Model 1 oil production forecast in Dataset 1, with forward-
days = 100, look-back = 200 and RMSE= 17.09.

Figure 4.54: LSTM Model 1 oil production forecast in test set of Dataset 2,
with forward-days = 100, look-back={50, 100, 200}.
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Figure 4.55: LSTM Model 1 oil production forecast in Dataset 2, with forward-
days = 100, look-back = 100 and RMSE= 19.24.

Figure 4.56: LSTM Model 1 oil production forecast in Dataset 3, with forward-
days = 100, look-back={50, 100, 200}.
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Figure 4.57: LSTM Model 1 oil production forecast in Dataset 3, with forward-
days = 100, look-back = 100 and RMSE= 17.99.

Figure 4.58: LSTM Model 2 oil production forecast in Dataset 4, with forward-
days = 100, look-back={50, 100}.
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Figure 4.59: LSTM Model 1 oil production forecast in Dataset 4, with forward-
days = 100, look-back = 100 and RMSE= 209.66.

4.2.2
Input: Oil rate and pressure

As already observed in the previous section, for relatively high values of
forward-days, the predictions are not satisfactory for dataset 4. In the cases
of datasets 1, 2 and 3, due to their periodic characteristics, the results seems
acceptable considering the long period of prediction. The results of this section
reinforce the behavior already observed in the case forward-days = 50. If we
look for predictions for longer periods such as forward-days = 50 or 100, the
results indicate that we should insert other information in the system. In the
next section, we add pressure data as a second feature.

The daily oil rate production and the down hole pressure were the inputs
for LSTM model, to forecast forward-days = 50. From now on, since there
is more then one feature in the inputs, we decided to use Model 2 to all
predictions.

4.2.2.1
Forward-days = 50

Table 4.11 shows the RMSE for each look-back, in each dataset for
forward-days = 50.

Figure 4.60 shows the results of Model 2 for each look-back in test set
of Dataset 1 and Figure 4.61 shows the best outcome for all Dataset 1, with
look-back = 50. Figure 4.62 shows the results of Model 2 for each look-back in
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test set of Dataset 2 and Figure 4.63 shows the best result for all Dataset 2,
with look-back = 50. Figure 4.64 shows the results of Model 2 for each look-
back in test set of Dataset 3 and Figure 4.65 shows the best outcome for all
Dataset 3, with look-back = 50. Figure 4.66 shows the results of Model 2 for
each look-back in test set of Dataset 4 and Figure 4.67 shows the best outcome
for all Dataset 4, with look-back = 25.

look-back RMSE

Dataset 1
25 57.34
50 42.37
100 55.48

Dataset 2
25 50.77
50 35.31
100 41.48

Dataset 3
25 63.71
50 34.09
100 45.77

Dataset 4
25 269.56
50 224.79
100 302.00

Table 4.11: Summary of the LSTM Model 2 results when the input was the
oil rate production and the down hole pressure, with look-back = {25, 50, 100}
and forward-days = 50.
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Figure 4.60: LSTM Model 2 oil production forecast in Dataset 1, with forward-
days = 50, look-back={25, 50, 100}.

Figure 4.61: LSTM Model 2 oil production forecast in Dataset 1, with forward-
days = 50, look-back = 50 and RMSE= 42.37.
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Figure 4.62: LSTM Model 2 oil production forecast in Dataset 2, with forward-
days = 50, look-back={25, 50, 100}.

Figure 4.63: LSTM Model 2 oil production forecast in Dataset 2, with forward-
days = 50, look-back = 50 and RMSE= 35.31.
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Figure 4.64: LSTM Model 2 oil production forecast in test set of Dataset 3,
with forward-days = 50, look-back={25, 50, 100}.

Figure 4.65: LSTM Model 2 oil production forecast in Dataset 3, with forward-
days = 50, look-back = 50 and RMSE = 34.09.
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Figure 4.66: LSTM Model 2 oil production forecast in test set of Dataset 4,
with forward-days = 50, look-back={25, 50, 100}.

Figure 4.67: LSTM Model 2 oil production forecast in Dataset 4, with forward-
days = 50, look-back = 25 and RMSE= 224.79.

The results indicate that datasets 1, 2 and 3 can still reasonably tolerate
forecasts up to 50 days. The incorporation of pressure into the inputs, intro-
duced some noise into the results, that could be seen int the graphics and in
the RMSE’s. For the case of example 4, the prediction was still not acceptable,
and incorporating the pressure to the inputs did not bring better outcomes.
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4.2.3
Input: Oil rate, pressure and future pressure

The results obtained in previous section, showed that including the pres-
sure to the inputs, could bring some noise to the results.Therefore, we decided
to include the pressure from the days we were about to predict as an input.
The idea behind this atempt is that if the network could reasonable learn the
relation between oil production and pressure, it could produce better predictions
of oil production if it knows the pressure from these days. So, the LSTM neural
network has 3 inputs: the oil rate production of look-back days, the down hole
pressure of look-back days, and the down hole pressure of forward-back days.

According to the method adopted to transform a time series information
to the inputs of an LSTM neural network, it is necessary that all inputs has the
same dimensions. Hence, the three inputs used in this section must be sequences
of the same size, requiring that look-back and forward-back assume the same
value.

In this section, we use the LSTM Model 2 to forecast forward-days =
{50, 100}. Table summarizes the results for each dataset.

look-back = forward-days RMSE

Dataset 1
50 07.51
100 13.61

Dataset 2
50 39.01
100 21.36

Dataset 3
50 45.89
100 102.93

Dataset 4
50 147.11
100 174.11

Table 4.12: LSTM Model 2 results when the input was the oil rate production,
the past and the future down hole pressure with forward-days = {50, 100}.

Figure 4.68 shows the results of Model 2 for each forward-days in test set
of Dataset 1 and Figure 4.69 shows the best outcome for all Dataset 1, with
forward-days = 50. Figure 4.70 shows the results of Model 2 for each look-back
in test set of Dataset 2 and Figure 4.71 shows the best result for all Dataset
2, with forward-days = 100. Figure 4.72 shows the results of Model 2 for each
look-back in test set of Dataset 3 and Figure 4.57 shows the best outcome for
all Dataset 3, with look-back = 100. Figure 4.58 shows the results of Model

DBD
PUC-Rio - Certificação Digital Nº 2120563/CA



Chapter 4. Results 88

2 for each look-back in test set of Dataset 4 and Figure 4.75 shows the best
outcome for all Dataset 4, with look-back = 50.

Figure 4.68: LSTM Model 2 oil production forecast in Dataset 1, with 3 inputs
and forward-days = {50, 100}.

Figure 4.69: LSTM Model 2 oil production forecast in Dataset 1, with 3 inputs
and forward-days = 100, look-back = 100 and RMSE= 07.51.
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Figure 4.70: LSTM Model 2 oil production forecast in Dataset 2, with 3 inputs
and forward-days = {50, 100}.

Figure 4.71: LSTM Model 2 oil production forecast in Dataset 2, with 3 inputs
and forward-days = 50, look-back = 50 and RMSE= 21.36.
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Figure 4.72: LSTM Model 2 oil production forecast in Dataset 3, with 3 inputs
and forward-days = {50, 100}.

Figure 4.73: LSTM Model 2 oil production forecast in Dataset 3, with 3 inputs
and forward-days = 50, look-back = 50 and RMSE = 45.89.
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Figure 4.74: LSTM Model 2 oil production forecast in Dataset 4, with 3 inputs
and forward-days = {50, 100}.

Figure 4.75: LSTM Model 2 oil production forecast in Dataset 4, with 3 inputs
and forward-days = 50, look-back = 50 and RMSE = 147.11.

The results indicate that datasets 1, 2 3 and 4 can reasonably tolerate
forecasts up to 100 days. The incorporation of future pressure into the inputs,
improved a lot the results from previous section, suggesting that the network
could learn some of the relation between oil production and pressure.
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4.3
Results Comparison

In this section, we present the comparison of the models used in this
work to forecast the oil production of a well. In most predictions shown in
last sections, we tested three different values for look-back. In this section, we
consider only the best outcome, wich means the result with lower RMSE. For
that reason, we only consider one value of look-back for each prediction.

4.3.1
Random Forest x LSTM

Table 4.13 summarizes the results of LSTM Model 1 and Random Forest
algorithms for Datasets 1, 2, 3 and 4 and forward-days = {1, 10, 50, 100}. The
prediction of forward-days = 10 in Dataset 1, was the only time Random Forest
presented an slightly lower RMSE then LSTM. In all other predictions, LSTM
had a better performance, proving to be a more appropriate technique to time
series prediction.

forward-days RF RMSE LSTM RMSE

Dataset 1

1 9.64 1.34
10 2.48 1.00
50 34.35 10.92
100 45.67 17.09

Dataset 2

1 22.58 3.75
10 28.38 3.12
50 45.19 12.20
100 63.42 19.24

Dataset 3

1 36.37 1.71
10 43.49 2.81
50 71.73 11.97
100 112.25 12.99

Dataset 4

1 73.07 12.64
10 137.20 102.66
50 203.41 161.67
100 213.91 209.66

Table 4.13: Summary of the LSTM Model 1 and Random Forest results for
forward-days = {1, 10, 50, 100}.
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4.3.2
1 input x 3 inputs

In this work, we tested the LSTM neural network with different inputs.
Initially, the network had 1 input: the oil rate production of look-back days.
Then, we incorporated the pressure into the inputs, and the network had 2
inputs: the oil rate production and the down hole pressure of look-back days.
Finally, we added the pressure from the days we were about to predict to the
inputs so the network had 3 inputs: the oil rate production and the down hole
pressure of look-back days and the down hole pressure of forward-days. The
results obtained with three inputs were much superior to the ones generated
with two inputs. For that reason, in this section, we compare the results of
compare the results of one and three inputs for forward-days = 100.

Table 4.14 shows the RMSE’s for each dataset in each input given to the
network. For Datasets 1, 2 and 3, both inputs could genarate reasanable results.
For Dataset 4, a real dataset with more complex information, the pressure
brought a slightly improvement to the outcomes, producing a better RMSE.

1 input RMSE 3 inputs RMSE

Dataset 1 17.09 13.61
Dataset 2 19.24 21.36
Dataset 3 12.99 17.99
Dataset 4 209.66 174.11

Table 4.14: Summary of the LSTM results with 1 and 3 inputs, for forward-
days = 100.
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Conclusions

This study proposes applying the random forest algorithm and the LSTM
neural network for oil production forecasting. The strategy used was similar
to the one presented in the time series forecasting, where the whole dataset is
considered time-dependent, and the training dataset is split into small pieces of
the entire data. The size of these series pieces is referred to as look-back. The
chosen techniques were used to predict one and multiple tim steps ahead, and
we refer to the amount of time steops we were about to predict as forward-days.

The target data is the oil production related to that series piece at the
immediate forward-days time steps. We use 3 different sythtetic datasets and 1
real dataset to evaluate the robustness and the efficiency of the method in pre-
dicting high nonlinear physical dynamic data. Moreover, we test the method’s
performance by applying different values for the look-back and forward-days
parameteres. We also experiment with some hyperparameters of the theoretical
background of the random forest algorithms, such as the forest’s number of trees
and the bootstrap sampling ratio, to proceed with the bagging technique. We use
the root mean squared error (RMSE), a classical error measuring practice, to
assess the results.

The results obtained by this study suggest that the random forest algo-
rithm could get accurate results when predicting oil field performance with an
acceptable RMSE for forward-days = 1. The bootstrap sampling ratio of 50%
showed to be enough to acquire good final results. Considering the number of
trees in the forest, we tested 100, 500, and 1000. However, the result was in-
conclusive because some experiments found the best fit for using 100 trees and
others using 1000 trees. Therefore, we leave this hyperparameter open for fur-
ther research.

The outcomes for higher values of forward-days suggest that the LSTM
neural network is more adequated to predict time series data. For Datasets 1,
2 and 3, the results for forward-days = {10, 50, 100} had acceptable RMSE
values. We understand that these datasets, due to its periodicity behavior, the
network could capture information with reasonable quality. For Dataset 4, due
to its greater complexity, the network could only produce admissible predictions
when the inputs included the pressure of the days we were about to predict.
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Even so, the outcomes were not accurate, they only reproduced the order of
magnitude in Dataset.

For future works, we plan to continue this work by implementing more
features to the LSTM neural network. Also, we plan to implement other
machine learning techniques to make more accurate predictions considering
additional information from a reservoir as inputs.
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